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Abstract 

An attempt is made to summarize both theoretical 
and experimental aspects of generalized atomic dis- 
placement parameters (ADP's) in crystalline matter. 
Generalized displacement parameters are used to 
describe the weakening of Bragg intensities via the 
anharmonic (static or thermal) Debye-Waller factor 
(DWF) and its real-space counterpart, the generalized 
atomic probability density function (p.d.f.). The lat- 
tice dynamical base of the harmonic and anharmonic 
thermal DWF is discussed. It is pointed out that the 
static DWF frequently contains higher-order terms. 
The mathematical base for an experimental deter- 
mination of generalized ADP's is given. The most 
popular current formulations (one-particle potential 
and statistical approaches) are reviewed and their 
individual limitations are discussed. Likewise the 
demands put on the quality and extent of experi- 
mental data are assessed. Some aids to the interpreta- 
tion of generalized ADP's established by crystallo- 
graphic least-squares procedures are given and a 
Monte-Carlo method for the calculation of errors in 
p.d.f, maps is presented. Finally, some prospects for 
future work are outlined and a more frequent com- 
parison of theoretical calculations and experimental 
determinations of generalized ADP's is advocated. 

I. Introduction 

Crystallographic structure analysis is a well estab- 
lished tool of solid-state research ranging from bio- 
chemistry to solid-state physics. The crystal structure 
is of fundamental interest in many studies of crystal- 
line matter as it controls a good part of the properties 
and functions of the material. Often a detailed under- 
standing of a material needs a detailed knowledge of 
the structure. Likewise a deep theoretical understand- 
ing of matter allows the prediction of fine details in 
the structure. In both cases an adequate knowledge 
of the crystal structure is indicated. Not surprisingly, 
over the years what is considered as adequate knowl- 
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edge of the structure has changed. Important progress 
has been made in experimental procedures and ana- 
lytical techniques as well as theoretical understand- 
ing. As there is no direct experimental access to the 
accurate crystal structure usually a model of the crys- 
tal structure is refined by least-squares methods using 
Bragg intensity data as observations. For a long time 
a structure was considered as determined when the 
atom positions of the structure model were believed 
to be established. Atomic thermal motion was con- 
sidered as perturbation of the structure and intro- 
duced later into the model with additional parameters 
to account for the weakening of Bragg intensities with 
increasing scattering angle. However, subjected to 
systematic errors in the data much more than the 
positional parameters, sometimes they did not receive 
a lot of attention and often were not fully acknowl- 
edged. On the other hand, there is overwhelming 
evidence that thermal motion or - more generally - 
atomic displacement parameters (ADP's)t  may carry 
very useful information and deserve more attention. 
Usually thermal-motion analysis is restricted to a 
harmonic model, i.e. to a Gaussian probability distri- 
bution of the atoms. However, in an increasing num- 
ber of cases the harmonic approximation is incom- 
mensurate with the quality of Bragg diffraction data. 
Moreover, valuable information concerning the struc- 
ture and properties of materials is contained in model 
parameters describing the deviations from a Gaussian 
probability density distribution. It is the main concern 
of this paper to show where one has to expect suJa 
deviations, how they can be modelled and what may 
be learned from the results. In §§ 2 to 4 a summary 
of the theory of generalized atomic displacements is 
given starting from the harmonic case. This part may 
be useful as a guideline for beginners in the field; 
however it cannot replace some considerably more 
comprehensive treatments of the fairly involved sub- 
ject given in the quoted literature. For the experts it 
may serve as a recapitulation of the essential features 

t Since static and thermal atomic displacements cannot be distin- 
guished easily, the wording ADP's has been advocated by Professor 
J. D. Dunitz to replace 'thermal' (or 'vibration') parameters and 
this wording is accepted in the crystallographic community. 
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and they also will find a more detailed discussion of 
the main problems of analysing generalized atomic 
displacements in §§ 5 and 6. Furthermore, these sec- 
tions are intended to provide for the beginners in the 
field conditions for the warranted use of higher-order 
displacement terms. 

Waller (1927) had already investigated the 
influence of anharmonicity on Bragg and thermal 
diffuse scattering. His results suggested relatively 
small contributions and further theoretical work had 
to await the sixties. Hahn & Ludwig (1961), Krivoglaz 
& Tekhonova (1961), Maradudin & Flinn (1963), 
Wolfe & Goodman (1969) and Shukla & Hiibschle 
(1989) worked out theories for the anharmonic contri- 
bution to the thermal scattering of X-rays (or 
neutrons). The authors of the latter three papers also 
calculated numerically the anharmonic contribution 
to the Debye-Waller factor (DWF) for the case of 
f.c.c, metals (Maradudin & Flinn, 1963; Wolfe & 
Goodman, 1969; Shukla & Plint, 1989). However, 
these lattice-dynamical treatments are extremely 
involved and seemed of little practical interest except 
for very simple crystal structures. It was only in the 
late sixties that anharmonic thermal motions were 
treated in a form readily accessible to crystal structure 
analysis of more complicated materials. The mile- 
stones on this route were Dawson's generalized struc- 
ture-factor formalism, Willis's isolated-atom poten- 
tial approach and Johnson's statistical treatment for 
thermal motion. A summary of these contributions is 
found in Dawson (1975), Willis & Pryor (1975) and 
Johnson (1970). Since then a few hundred papers of 
both theoretical and experimental natures have been 
published and it is probably timely to assess critically 
the merits and shortcomings of the different 
approaches as well as to indicate the needs of future 
research. 

2. The harmonic approximation 

Atoms in crystals are never at rest. As the interaction 
time of an X-ray photon with the electrons is several 
orders of magnitude shorter than the period of a 
lattice vibration, X-ray diffraction samples in space 
over many quasi-static atomic configurations. 
Moreover, as the investigated crystals contain very 
many symmetrically equivalent atoms, the quantity 
which affects Bragg intensities is the time-space 
average of the atomic displacements. Despite the 
larger interaction time of a thermal neutron with the 
nucleus the situation is essentially the same for 
neutron diffraction. 

In the following we will discuss the description of 
atomic displacements in the harmonic approximation 
in so far as it is necessary to treat its generalization; 
comprehensive treatments of the harmonic case can 
be found in the literature (e.g. Krivoglaz 1969; 
Maradudin, Montroll, Weiss & Ipatova 1971; Willis 

& Pryor, 1975). A phenomenological approach to 
second-order ADP's is given in Dunitz, Schomaker 
& Trueblood (1988); this paper also gives a very good 
introduction into mechanistic models of thermal 
motion and the interconnection of ADP's with 
spectroscopic frequencies and force constants. The 
lattice-dynamical treatment chosen in the following 
may in many cases be too complicated for a rigorous 
theoretical calculation of the ADP's, but it solely can 
give deeper insight into the origin of deviations from 
harmonic behaviour. 

The basic quantity that is measured in a scattering 
experiment with thermal neutrons is the partial 
differential cross section d2o'/dO dE of the target 
sample, which gives the scattered intensity per ele- 
ment of solid angle dO and per energy interval dE. 
The scattering law can be expressed in terms of Four- 
ier transforms of correlation functions with operators 
describing the scattering relevant properties of the 
target sample (e.g. Lovesey, 1984). The relevant quan- 
tity is the (time-dependent) pair correlation function 
G(r, t), which describes the averaged pair distribu- 
tion of the N scattering particles located at r, r' by 
means of particle density operators pap 

G ( r , t ) = l / S - l ~ ( p p ( r ' - r , O ) p p ( r ' , t ) ) d r  ' (1) 

with j" G(r, t) dr = N. Here and in the following the 
brackets ( . . . )  indicate thermal time or ensemble 
averages. In a Bragg scattering experiment one 
measures the elastic coherent part of the total scatter- 
ing cross section. The correlation function for elastic 
scattering is of course time independent; the two 
particle density operators in (1) thus become uncorre- 
lated. Likewise G(r, t ~ oo) is given by 

G(r, oo)= N -~ ~ (pp(r'-r))(pp(r')) dr'. (2) 

If the target sample is a crystal, (2) is closely related 
to the well known Patterson function. With (2) the 
elastic coherent cross section is expressed as 

(dtr /dO) = S(trc/47r) ~ G(r) exp (irs) dr 

= [~ (p(r)) exp (irs) dr[ 2 (3) 

giving the scattered intensity in a solid-angle element 
dO centred around the scattering vector s. o% is the 
bound nucleus coherent cross section which is related 
to the averaged neutron scattering length b by o% = 
47r b 2 and p(r) is the scattering-length-weighted par- 
ticle density. 

The situation for elastic coherent X-ray scattering 
is slightly more complicated. However, it has been 
shown by Scheringer (1980) that the approach to 
elastic coherent thermal neutron scattering can be 
fully applied to the X-ray case in the limit of the 
Born-Oppenheimer approximation (instantaneous 
electronic-nuclear coupling on displacements). If the 
target sample is a crystal, scattering takes places only 
in directions s corresponding to the nodes Q of the 
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reciprocal lattice of the crystal. Then the scattered 
intensity is obtained with (3) as 

d t r /dO = I ( Q ) =  F ( Q ) F ( Q ) *  

=[ ~ ( p ( r ) ) e x p ( i r Q ) d r  2 (4) 
ce l l  

and the structure factor F(Q)  is given as 

F ( Q ) =  ~ ( p ( r ) ) e x p ( i r Q ) d r  (5) 
ce l l  

for both thermal neutron and X-ray scattering; F(Q)* 
denotes the complex conjugate of F(Q).  

Thus the structure factor is the Fourier transform 
of the averaged scattering density distribution in the 
unit cell of a crystal. (p(r)) contains not only the 
information on the atom positions but also on the 
total averaged atomic displacements. We now for- 
mally split (p(r)) into a static and a dynamic part for 
every atom a in the unit cell 

(p(d, r, u)) = ~  (p(d,~))*(p(rs))*(p(u~)) (6) 
s 

the total scattering density being a convolution of 
three contributions of atomic, static and dynamic 
origin. Then the Fourier transform of (p(d, r, u)) is 
given as 

F(Q) = Y. f s (exp  ( iQrs))t (exp ( iQus)),.t (7) 
s 

where fs denotes the atomic scattering factor, ( )t 
defines the static space average [the so-called static 
DWF Ss(Q)] and ( ) ,d  the dynamic time-space 
average [the so-called thermal DWF Ts(Q)]. 

Furthermore, by combining (5), (6) and (7) we may 
express these averages by their Fourier transforms 

(exp ( iQu~)) ,d-  = Ts(Q) 

= ~ (p(u~)) exp (iQu~) du~ (8a) 

(exp (iQArs)),  m Ss(Q) 

= ~ (p(Ars))  exp (iQAr~) drs (8b) 

with 

( e x p ( i Q r s ) ) l = e x p ( i Q r s ) ( e x p ( i Q A r s ) ) t  (8c) 

where A rs is the deviation from the averaged atomic 
position rs. 

In the following we will consider the static and 
thermal averages separately starting with the thermal 
c a s e .  

The thermal Debye- Waller factor 

The well established theory of lattice dynamics (see 
e.g. Maradudin, Montroll, Weiss & Ipatova, 1971; 
Willis & Pryor, 1975) gives access to the individual 
atomic displacements u and allows one to calculate 

their thermodynamic averages. The crystal potential 
usually governs the atomic displacements (except for 
very light atoms in some cases) and a general form 
of the crystal potential V is given by a Taylor 
expansion in the atomic displacements u 

V= Vo+ V,+ V=+ V3+ V4+... (9) 

where 

Vo = constant 

V,= ~, u~(1)cIL(l) 
s , l  

V2=(1/2!) Y'. ~'. u~(1)u[3(l')dPs[3(l, l') 
s , l  [3,1' 

V3=(1/3 !) Y~ Z Y~ Us(1)u[3(l')u~(l")c19s[3r(l, l', I") 
s , I  [3,1' ~,,1" 

etc. ci9 .... ( l , . . . )  are derivatives of the potential energy 
at u = 0; a, a, % . . .  label the atoms and l, l', l" label 
the ceils. In a crystal VI=0  except at the crystal 
surface under applied stress. In the harmonic 
approximation only the terms V o and V2 are retained 
and the force constants (coupling parameters) 
• ~[3 (l, l') describe the atomic interactions completely. 
Knowing the atomic masses ms and the force con- 
stants, one can give the 3nN equations of classical 
motion of the n atoms in N unit cells of the crystal. 
These equations can be reformulated by intro- 
ducing dimensionless normal coordinates jq ( j =  
1 , 2 , . . . , 3 n )  and the (mass-adjusted) dynamical 
matrix D, whose elements Dc, fl(q) contain the force 
constants ~s[3(l, l') as Fourier coefficients in a sum 
over all unit cells. If one further assumes the displace- 
ments to have a time dependence exp (-/ tat) ,  the 
simultaneous solutions of the equations of motion 
are obtained from the eigenvalue equation 

ta~(q)e(jq) = D(q)e(jq) (10) 

where q runs over the N points of the Brillouin zone 
(= number of unit cells in the crystal). For each value 
of q there are three solutions for to corresponding to 
three values of j ;  to each %(q) belongs a polarization 
vector e(jq). The energy of each such normal mode 
is given as 

Ej(q) = h%(q)[½+ {exp [ h%(q) /  ( kBT) ] - l } -1] (11) 

in the quantum-mechanical regime (kB is Boltzmann's 
constant) and as 

Ej(q)= kBT (12) 

in the classical regime of temperature. Then the 
instantaneous atomic displacement us(l, t) is given 
by a superposition of the displacements of all normal 
modes 

us(l, t) = ( Nms)-1/2 Y, [ Ej(q)/ ta~(q)]I/2es(jq) 
Jq 

×exp [iqrs (1) - i%(q) t] (13) 
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where e~(jq) gives the polarization vector for atom 
a in the normal mode jq. Each normal mode corres- 
ponds to a one-phonon state, i.e. a state with no 
interaction with any other phonon. In this case the 
total thermal energy of the crystal is calculated as the 
sum of the individual phonon contributions. It also 
follows that the number of phonons in a non-inter- 
acting harmonic crystal is fixed for a given tem- 
perature and correspondingly each phonon has an 
infinite lifetime. A change of temperature creates or 
annihilates phonons but it leaves the frequencies of 
the remaining phonons unchanged. 

The thermodynamic average of all displacements 
given in (13) may be calculated from the eigenvalues 
and eigenvectors of the dynamical matrix 

(u,~u ~)= (Nm~) -~ ~ [ Ej(q)/to](q)]e~ ( jq)e*(jq)  r 

Jq (14) 

where e * r  is the complex transpose ofe~. The tedious 
procedure of diagonalizing the dynamical matrix D 
is in fact not necessary to calculate the atomic mean- 
square displacements (m.s.d.'s). Born (1942) has 
shown that the inverted dynamical matrix allows for 
a calculation of m.s.d.'s without loss of generality. In 
the classical regime one obtains 

(u~u r) = (kBT/Nrn~) E D ~ ( q )  (15) 
q 

where DS~(q) is a diagonal 3 x 3 block of the inverted 
dynamical matrix. By virtue of the matrix inversion 
the interatomic coupling (explicitly given in the off- 
diagonal elements of the dynamic matrix) enters into 
the individual atomic m.s.d.'s. Thus there is no need 
to introduce explicit coupling terms in the m.s.d.'s as 
they are contained in (uu r) and there is no way to 
separate them in a Bragg diffraction experiment. 

The dynamically averaged probability density 
function (p.d.f.), sometimes called thermal smearing 
function, of a system of independent harmonic oscil- 
lators has been calculated by Bloch (1932). The p.d.f. 
is given in the classical and quantum regime as a 
trivariate Gaussian centred at the atomic position r~ 

( p ( u ~ ) ) -  p.d.f.~(u) 

= [(det P,)~/2/(27r) 3/2] exp [ - ( 1 / 2 ) u  7"P,~u] 

(16) 

where P~, = U~ l and U~ (u~u r = ,,); the atomic position 
is defined as the mean value of this distribution. By 
virtue of (8a), the atomic thermal DWF (temperature 
factor) T~(Q) is given by the Fourier transform of 
the trivariate Gaussian p.d.f. Thus it is also a trivariate 
Gaussian with inverse halfwidth 

more familiar to the crystallographer as* 

T~(h)=exp(-2rr2h, la ' hja j U~) (18) 

where hi are (covariant) Miller indices, a i are 
reciprocal-cell axes, U U = (ui#) with i,j = 1, 2, 3. For 
computational convenience one often writes 

T~(h) = exp (-hihfl~) (19) 

with f l~=  27r 2 a' la lu  (no summation). 

The static Debye- Waller factor 

While the theory of the thermal Debye-Waller  fac- 
tor in harmonic approximation is very well estab- 
lished, the same does not hold true for the static 
Debye-Waller  factor. Yet it is of considerable import- 
ance for a wide variety of substances ranging from 
crystals with point defects to orientationally disor- 
dered materials, all exhibiting deviations from strict 
crystallographic periodicity. It is precisely this vari- 
able non-ideality which prevents working out a com- 
prehensive theory. A description of the physical origin 
of static displacements in crystals cannot be cast in 
the form of the lattice-dynamical normal mode theory 
for thermal displacements, because the distortion 
fields in the neighbourhood of a defect are of widely 
different range and nature and may be correlated with 
each other to a variable degree. This situation calls 
for an explicit treatment of the individual atomic 
contributions in the distortion field of interest, e.g. 
by evaluation of real- and /o r  reciprocal-space lattice 
sums. Still one may treat the static Debye-Waller 
factor in an approximate manner equivalent to the 
thermal harmonic case in that one only considers a 
quadratic Q dependence. One first assumes that the 
deviations Ar,.t from the ideal lattice site I, obey the 
constraint y , a r , . ; = 0  as the crystal is considered 
macroscopically not deformed. Then, under the 
assumption of a Gaussian distribution of the devi- 
ations Ar~, one obtains in analogy to (17) 

S~=(exp(iQAr,,)),ozexp[-1/2((QAr~)2)]. (20) 

Clearly S~ is a function of the concentration of the 
defects as well as the number of neighbours a around 
the defect. Furthermore, S~ is usually taken as tem- 
perature independent in which case one may extract 
the static part of the Debye-Waller  factor as a con- 
stant addition to the linearly temperature-dependent 
harmonic dynamic part. A study of this temperature 
dependence of the total Debye-Waller  factor conduc- 
ted in the classical regime allows the static contribu- 
tion to be obtained by extrapolation to zero tem- 
perature. A few comments are in order at this point. 
Firstly, there is little physical justification for a 

T,,(Q) = exp [ ( -  1/2)((Q • u)2)] (17) 

which may be expressed with Q = 4~h a[ in a form 

* Here and in the following tensor notation is employed to allow 
for a coherent description of anharmonic terms. Implicit summa- 
tion over repeated indices is assumed unless stated otherwise. 
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Gaussian distribution of the static displacements A r~. 
As Krivoglaz (1969) pointed out, the distribution 
indeed is hardly ever Gaussian; in contrast to state- 
ments in the literature the central-limit theorem of 
statistics (which is valid for large and statistically 
independent quantities) cannot be invoked here as - 
despite the large number of atoms affected by the 
lattice defects- their shifts are highly dependent on 
the distance from the defect. Secondly, the experi- 
mental separation of static and dynamic parts is not 
necessarily a straightforward procedure as there may 
be non-additive contributions describing the coupling 
of thermal and static displacements. For a proper 
treatment of such cases a dynamic model for the 
defect environment needs to be worked out either 
theoretically or experimentally (e.g. by spectroscopic 
techniques). Nevertheless, useful information on 
static displacements in the quadratic approximation 
of (20) may be obtained under certain assumptions 
and experimental precautions; if one studies systems 
with moderate defect concentrations (i.e. no defect 
clustering) and restricts the analysis to the low-Q 
Bragg diffraction data, the deviations from the quad- 
ratic approximation are usually fairly small and the 
results are amenable to a semiquantitative analysis 
(e.g. Metzger, Behr & Peisl, 1982). Finally, one should 
mention that a great deal of information on disor- 
dered crystallographic systems is contained in the 
elastic diffuse scattering, a discussion of which is 
beyond the scope of the paper, but may be found in 
the literature (e.g. Bauer, 1979; Dederichs, 1973). 

3. The generalized Debye-Waller factor 

It has been shown in the preceeding section that the 
atomic Debye-Waller factor may be described as the 
Fourier transform of a trivariate Gaussian p.d.f. 
characterized by a set of mean-square displacement 
parameters. Nevertheless such a procedure is always 
an approximation to the true physical situation of a 
crystal (which may however be adequate in many 
instances). It is worth remembering that many proper- 
ties of crystalline matter depend partly or entirely on 
anharmonic atomic interactions. Likewise, the dis- 
ordered nature of real crystals is often expressed in 
non-Gaussian atomic p.d.f.'s. It is precisely the con- 
cern of this section to discuss why and where such 
deviations occur and how they influence Bragg 
diffraction data. 

The thermal anharmonic Debye- Waller factor 

Thermal expansion, the limited thermal conduc- 
tivity in insulators or third-order elastic constants are 
direct manifestations of lattice anharmonicity, and 
many other physical properties like the specific heat 
or the scattering by phonons are affected by the pres- 
ence of anharmonic terms in the crystal Hamiltonian. 

A great deal of work has been devoted in the past to 
give theoretical access to and clarify the role of these 
anharmonic contributions in crystalline materials 
(e.g. Leibfried & Ludwig, 1961; Choquard, 1967; 
Cowley, 1968; Glyde & Klein, 1971; Samathiyakanit 
& Glyde, 1973). The main results have meanwhile 
entered into physics textbooks (e.g. Ashcroft & 
Mermin, 1976). The effect of lattice anharmonicity 
on the thermal DWF is certainly less prominent than 
the examples quoted above; yet it is fairly easy to 
access experimentally as will be shown in the follow- 
ing chapters, and definitely merits some discussion. 

The harmonic approximation discussed in § 2 fails 
in two instances. Firstly, the crystal potential itself is 
not harmonic. The true crystal potential may be 
approximated to any desired degree of accuracy by 
the addition of higher-order terms in the atomic inter- 
actions as given in (9). Retention of third- and fourth- 
order terms in this expansion is generally assumed 
to suffice in all cases where a perturbation treatment 
of anharmonicity (as discussed below) is adequate. 
Even then the theoretical procedure is rather involved 
and an extension to fifth- and sixth-order terms, which 
is formally easily done, often is forbiddingly cumber- 
some to accomplish. It should be mentioned that 
third- and fourth-order contributions to the crystal 
potential are often found to be of similar magnitude 
and thus both terms should be retained in theoretical 
as well as in experimental work. Clearly, higher-order 
terms in the crystal potential will become increasingly 
important with increasing atomic displacements. 
Owing to the different distance dependencies, anhar- 
monic effects will be dominated by short-range repul- 
sive forces rather than by Coulombic interactions 
(which gave the legitimation for the predominant use 
of central force models to describe anharmonicity). 
However, more recently it has been shown that contri- 
butions from long-range interactions are essential for 
a quantitative description of anharmonicity (Shukla, 
1981; Shukla & Mountain, 1982). Large atomic dis- 
placements are expected for weak interatomic forces 
and for small atomic masses (in the quantum regime) 
and of course are always encountered at temperatures 
approaching the melting point of a crystal. Likewise, 
important anharmonic contributions due to large dis- 
placements are likely to be encountered when the 
structure is about to undergo a phase transition. A 
second instance where the harmonic approximation 
dramatically fails is evoked by the uncertainty prin- 
ciple in a quantum crystal like solid helium (e.g. 
Koehler, 1975). Here - despite a supposedly harmonic 
crystal potential - a kinetic-energy term modifies, by 
virtue of its proportionality to the square of atomic 
momentum, the effective Hamiltonian of the crystal 
resulting in a highly anharmonic (bimodal) p.d.f, for 
every atom. This is in sharp contrast to a classical 
system of (harmonic) oscillators, where kinetic and 
potential energy are constantly interchanged with 
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equal averaged contributions. This parity is always 
violated in an anharmonic crystal, however not in 
such a fundamental way as encountered in a quantum 
crystal. 

We now discuss the effects of lattice anharmonicity 
on the thermal DWF. The most obvious, though not 
necessarily the most pronounced, influence comes 
from the increased flexibility (additional isotropic 
and anisotropic terms) of the anharmonic crystal 
potential. Those terms originate in two-body central 
interactions with more than two displacement co- 

i j k ordinates i,j, k , . . .  (terms like u,~u,~u~,O~,.~,) " or in 
many-body interactions (terms like ' j K UaU~Uv~a~v) 
entering in (9); naturally there are also self-terms 

i uJau k (like u,~ ,~O,,~), however, only terms of even 
order in the displacements are different from zero 
(see Leibfried & Ludwig, 1961). Theoretical treat- 
ments are usually restricted to the two-body contribu- 
tions for the lack of good many-body potential param- 
eters; good-quality pair coupling parameters 
(between even fairly distant atoms) are available in 
many cases from elastic constant and inelastic 
neutron scattering data. Formally the anharmonic 
DWF is given by the thermodynamic average over all 
contributions u,~ in the expression (exp (iQu,~))o of 
(7). Here it is not necessary to evaluate the full parti- 
tion function 

Z = ~ e x p [ - V ( u ) / ( k B T ) ] d u .  (21) 

It suffices to determine the diagonal terms of the 
inverted dynamical matrix [cf. (14) and (15)] and its 
higher-order equivalents. Thus 

(exp (iQu,,,))t,t 

trace {exp ( /Qua) exp [ -  V(u~)/(kt~T)]} 
(22) 

trace {exp [ -  V(u~)/(kilT)]} 

as given by Krivoglaz & Tekhonova (1961) and Wolfe 
& Goodman (1969).* 

At low temperatures the crystal potential V(u) has 
to be replaced by the appropriate Hamiltonian of the 
crystal. A theoretical calculation of the anharmonic 
D W F  tries to evaluate the right-hand side of (22). 
Still in the language of lattice dynamics, anharmonic 

* Note that in several papers the DWF is given as 

<exp (iQu,~ -/Qua)) 

_ S exp [iQu,, -/Qua] exp [-  V(u~)/(KnT)] d£/ (22a) 
exp [-  V(u~)/ ( KBT) ] dO 

with dO as phase-space element. This is an unnecessary complica- 
tion as Bragg diffraction by virtue of (2) cannot give direct informa- 
tion on correlated atomic displacements as expressed in (22a); 
such information is carried solely by the diffuse scattering of a 
crystal. However, the interdependencies of the atomic displace- 
ments (as given in the mixed terms of the atomic coupling param- 
eters) contribute to the thermal average affecting the Debye- 
Waller factor in an analogous way as described in the harmonic 
case by (15) and formally stated in (22). 

effects may be discussed by introducing interactions 
between normal modes (i.e. phonons) as perturba- 
tions. Then anharmonic contributions to the DWF 
are due to the creation or annihilation of phonons 
(at constant temperature) and are given in terms of 
phonon coordinates or phonon creation and annihila- 
tion operators. Phonons will have a finite lifetime due 
to these interactions (which is seen as a broadening 
of phonon peaks in inelastic neutron scattering 
experiments). Of course Bragg diffraction as a zero- 
phonon scattering process is affected only through 
the modified displacement patterns and not directly 
by the phonon decay visible in phonon scattering 
processes. Indeed, (22) may be expressed with the 
aid of phonon coordinates (which contain the 
frequencies and polarization vectors of the phonons) 
which are allowed to interact as described by ther- 
modynamic Green functions (e.g. Shukla & Hiibschle, 
1989). The different interactions allowed for a given 
order of anharmonic contributions to the DWF were 
frequently obtained by diagrammatic techniques (e.g. 
Wolfe & Goodman,  1969; Mair 1980). It turns out 
that in a perturbation treatment the contribution of 
the third-order anharmonic term shows a quadratic, 
that of the fourth-order term (as well as that of the 
squared third-order term*) a cubic dependency on 
the absolute temperature (Maradudin & Flinn, 1963; 
Wolfe & Goodman,  1969; Mair, 1980). The explicit 
calculation of the anharmonic DWF involves real- 
and /o r  reciprocal-space integrations and has been 
carried out for simple crystallographic structures 
only. The calculations differ in the method of real- 
and /o r  reciprocal-space summation and also by the 
acquisition of the higher-order terms of the crystal 
Hamiltonian. 

While the explicit evaluation of anharmonic contri- 
butions to the DWF on the basis of the crystal poten- 
tial is always very cumbersome, there exists a very 
convenient way to express the left-hand side of (22) 
by a power series in u (which by dimensional argu- 
ments is equivalent to powers in Q). Such an 
expression obviously is not usable for a theoretical 
evaluation, but is well suited for the analysis of experi- 
mental results. As we have seen in the previous chap- 
ter the distribution function of Q "us is approximately 
Gaussian. Thus a generalized distribution of Q-u,~ 
may be represented by moments and cumulants 

* Quadratic third-order terms originate from pairwise occurren- 
ces of phonon creation or annihilation processes involving three 
phonons each. In total there are two phonons in the initial and 
two phonons in the final stage of the interaction. Thus, such 
quadratic third-order terms have a Q2Q2= Q4 dependency. It is 
remembered that the simple third-order term comes from the 
creation (or annihilation) of a phonon, i.e. 1(2) phonons in the 
initial state and 2(1) phonons in the final state, thus exhibiting a 
QQ2(Q2Q) = Q3 dependency. In the harmonic case the phonon 
remains unchanged and one has a QQ = Q2 dependency. Similar 
to quadratic third-order terms there also exist quadratic and higher- 
order contributions of all other terms. 
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(Kendall & Stewart, 1977). The moments are defined 
by a moment generating function M(Q) 

M(Q) - - ( exp  iQu~)= ~. (1/N!)((Q.u,~)N). (23) 
N = O  

The moments ((Q.u~) N) of order N may be 
expressed in terms of cumulants ((Q. u~) N)cum by the 
identity 

(1 /N!) ( (Q 'u~)  N) 
N = 0  

oo 

=exp  E (1/N!)((Q-u,,)N)cum 
N = I  

= exp (exp iQu,~ - 1 ) c u m .  (24) 

In a purely harmonic system all cumulants (but not 
all moments) of order >2 are identically equal to 
zero. Thus the evidence for lattice anharmonicity (and 
indeed for any other deviation from a Gaussian distri- 
bution ofQ -u,,) will be found in terms of higher-order 
cumulants in the general expression of the DWF. By 
means of Fourier transformation those higher-order 
cumulants will translate into higher-order modula- 
tions of the atomic p.d.f.'s as discussed in the next 
section. 

The effect of lattice anharmonicities on the dynamic 
behaviour of a crystal is fully accounted for by con- 
sidering the anharmonic Hamiltonian of the system. 
In very many cases a less-involved approach seems 
desirable with regard to the tremendous efforts 
needed to evaluate (22). One effect of anharmonicity 
is that the coupling parameters • (9) become tem- 
perature dependent. Such an effect may be accounted 
for by temperature-dependent normal-mode frequen- 
cies to in (13) (and is then sometimes call the implicit 
anharmonic effect). Experimentally one expects devi- 
ations from the linear behaviour of (u2~) with tem- 
perature in this case. In the so-called quasiharmonic 
approximation the inverse square of to in (13) is 
replaced by 

- 2  toquasiharmonic= to-2( l + 2TGxT) (25) 

where Yc is known as the Griineisen constant and X 
is the volume coefficient of expansion; thus the 
entirely anharmonic effect of thermal expansion is 
used as a scaling parameter in the quasiharmonic 
theory. 

An anomalous (anharmonic) behaviour of the 
DWF near structural phase transitions has frequently 
been advocated (see e.g. Bruce & Cowley, 1981), yet 
relatively little work has been done in detail, mainly 
within the framework of quasiharmonic theory. The 
anharmonic interactions of phonons are generally 
believed to drive a structural phase transition by a 
softening of certain phonon frequencies; the corres- 
ponding normal mode in the low-temperature phase 
freezes in as a static displacement of atoms. The soft 

phonons provoke the so-called central peak in the 
quasielastic response, but their contributions to the 
DWF remain unimportant. It has been shown (in a 
treatment restricted to terms quadratic in Q) that the 
critical part of the DWF near the phase transition of 
(anti)ferroelectric and similar materials is rigorously 
determined by the renormalized static phonon 
frequencies (originating in a shift of sublattices due 
to static distortions) and exhibits a cusp shape near 
Tc (Meissner & Binder, 1975; Binder, Meissner & 
Mais, 1976). A marginal cusp shape of the quadratic 
DWF was also obtained in a mean-field treatment of 
a two-dimensional (anti)ferrodistortive transition, 
while a molecular-dynamics treatment of the same 
system gave a smooth behaviour of the DWF across 
the phase transition (Mair, 1986). Clearly, in these 
cases a purely dynamic treatment is no longer 
sufficient because in the low-temperature phase static 
contributions to the DWF are dominant. 

In general it may be said that - though useful in 
some instances - the quasiharmonic theory of the 
DWF is often not of sufficient quality to explain the 
experimental evidence, especially at high tem- 
peratures (see e.g. Lima & Tsallis, 1980). Unfortu- 
nately, the explicit theoretical treatment of anhar- 
monicity in the dynamic DWF nowadays lags behind 
the experimental capabilities and this is true also for 
the static DWF as will be discussed in the following 
section. 

The static non-harmonic Debye- Waller factor 

In contrast to the thermal DWF the origin of static 
displacements in crystals is manyfold and any general 
theory will be less concise for this reason. As men- 
tioned in § 2 the static DWF is likely to behave dis- 
tinctly non-quadratically in Q. This has been stressed 
by Krivoglaz (1969), who gives a theoretical treatment 
for some specific cases of static disorder. In an ideal 
solid solution with small defect concentrations (e.g. 
in some alloys, H in metals) the static displacements 
and thus the static DWF may be calculated by means 
of lattice theory. Usually the displacements are split 
into two parts, one influenced by atoms fairly distant 
from the defect atom under consideration, where 
continuum theory is appropriate, and 

d i s t a n t  Cd/ d 3 (26) U a 

with the constant C describing the defect strength 
and d the distance from the defect labelled a. To 
describe the vicinity of a defect (in terms of so-called 
core deformations) one approximates the true force 
fields by introduction of an ideal host lattice described 
by Green's function G as obtained from phonon 
dispersion curves (see e.g. Tewary, 1973) and Kanzaki 
forces F (Kanzaki, 1957) 

!1 c°re - -  G~,~" F~. (27) 
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The contributions to the displacement of the defect 
atom a coming from nearest and more distant neigh- 
bours fl may be calculated in this approach (see e.g. 
Metzger, Behr & Peisl, 1982) and the total (in general 
distinctly non-Gaussian) distribution of displace- 
ments evaluated and compared to the experiment. 
Formally the static DWF for a given defect concentra- 
tion c in a solid solution (under the tacit assumption 
of equal probabilities for positive and negative dis- 
placements) is expressed according to Krivoglaz 
(1969) by means of a binomial defect displacement 
distribution Ar~ as 

(exp ( iQ.  A r,~)), 

=exp {(1/2) ~ ln[1 + 2c(1-c) (cos  Q • u,~,,~,- 1)]} 
t x  

(28) 

If zlr~ can be described by a linear superposition of 
individual defect displacements u,~,~,, 

Ar~ = Z cu~,~, (29) 

where u~,~, gives the displacement of the affected 
atom a on replacing a perfect lattice atom in its 
neighbourhood by a defect atom a'.  For small Q- u~,~, 
(28) may be expanded in powers of Q.u~,~, and 

(exp ( iQ.  Ar~)), = ½c(1 - c) ~ (Q.  u~,~,) 2 
ot  

~ c ( 1 - c ) [ 1 - 6 c ( 1 - c ) ]  

× ~  (Q  • Ua,a,)4+ . . . .  (30) 

Thus higher-order terms of the static DWF of defect 
atoms as well as of their p.d.f.'s have to be expected. 
These are considerably greater in interstitial solutions 
than in solid solutions of the substitution type. By 
combining (30) with (26) and (27) one may obtain a 
theoretical estimate of the static DWF. 

Very little theoretical work has been done for cases 
with deviations from a solid-solution behaviour. A 
discussion of correlations in the static DWF in the 
quadratic approximation has been given by Krivoglaz 
(1969). Such correlations are of considerable import- 
ance in H-bonded orientationally disordered crystals 
and it has been shown experimentally (Kuhs & 
Lehmann, 1986) that third- and fourth-order terms 
in the DWF are needed to explain the crystallographic 
data. Likewise a very limited amount of work has 
been done on the influence of static displacements 
on the thermal DWF, Krivoglaz (1969) gives a formal 
discussion of the problem stating that the terms con- 
taining both static and thermal components of the 
generalized DWF exhibit a fourth-power dependency 
on Q. As mentioned above, many structural phase 
transitions are characterized by static displacements 
in the low-temperature phase and dynamic displace- 
ments in the high-temperature phase with fluctuations 

involving static and dynamic components in the vicin- 
ity of the phase transition. All contributions are reflec- 
ted in the experimentally established DWF. Up to 
now the importance of higher-order terms in the DWF 
of a crystal near a structural phase transition has not 
been assessed quantitatively. However, it is quite clear 
that higher- (especially fourth-) order terms are 
important, certainly for transitions of the order- 
disorder type but also for displacive transitions (Fujii 
& Matsubara, 1987). It seems that experimental 
evidence for strong fourth-order terms in the DWF 
is indicative for an order-disorder phase transition 
in (anti)ferroelectric materials (e.g. McMahon, 
Nelmes, Piltz & Kuhs, 1990). 

The Debye- Waller factor for curvilinear motion 

To conclude this section we will briefly discuss 
contributions to the DWF originating in curvilinear 
atomic or molecular motions, which also lead to 
anharmonic terms in the DWF. Even if this case 
formally is covered by the lattice-dynamical treatment 
of the thermal DWF outlined above it merits some 
special attention. It is remembered that the coupling 
parameters of second order are constrained by the 
translational invariance (absence of external forces) 
of the crystal. Likewise there are restrictions on the 
coupling parameters due to a rotational invariance 
(conservation of angular momentum); yet to fulfil 
this invariance one has to constrain coupling param- 
eters of second and third order (Leibfried, 1964). This 
leads to an induced anharmonicity, which in most 
materials is fairly small compared with third-order 
terms of purely translational origin. Yet in some cases 
(e.g. in molecular crystals) these induced terms are 
important and need to be considered explicitly. It is 
then convenient to split up the crystal Hamiltonian 
into translational and rotational terms. Higher-order 
terms in this approach originate from the rotational- 
translational coupling of normal modes (see e.g. 
Michel, 1986). A detailed theoretical treatment of its 
influence on the thermal DWF has not been given, 
but the general appearance of the DWF will be iden- 
tical to the DWF originating in purely translational 
anharmonicity with, for example, temperature or Q 
dependency. Thus for ordered molecular crystals it 
will generally be sufficient to consider terms up to 
fourth order. Terms of even higher order may become 
important merely in the case of orientationally dis- 
ordered molecular crystals. In this case the general- 
ized distribution of Q "us given in (23) and (24) (still 
perfectly valid) is sometimes more conveniently 
expressed by means of symmetry-adapted spherical 
harmonics (Hfiller & Press, 1979) or some other 
appropriate function (Johnson & Levy, 1974). A 
detailed discussion of these approaches is beyond the 
scope of this article; see however Prandl, Hoser & 
Brfickel (1988) for a recent summary. 
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4. Mathematical formulation 

A generalized treatment of atomic displacements in 
crystal structure analyses demands a suitable param- 
etrization of higher-order contributions in the (static 
or thermal) DWF entering in the structure-factor 
equation (7). To be of general use the mathematical 
formulation should be applicable to all crystal struc- 
tures with due allowance for a reduction of the num- 
ber of parameters in the case of high symmetry. It 
would also be highly desirable that the higher-order 
terms obtained in a crystallographic least-squares 
refinement could be directly translated into a least- 
squares-filtered real-space representation of scatter- 
ing densities, rather than displaying the usual Fourier 
summation 

(p(x)) = V - ' E  F(Q)  exp (ixQ) (31) 
Q 

with its inherent fallacies of series-termination effects 
and error pile-up at high-symmetry positions. 

It has been realized by Dawson (1967) that both 
the atomic form factor f~ and the thermal DWF may 
contain imaginary contributions and this fact is 
exploited in all formulations of a generalized treat- 
ment of the DWF. It means that in the generalized 
structure factor 

F ( Q ) =  A ( Q ) +  iB(Q) (32a) 

one has to separate centrosymmetric (T~,c) and anti- 
symmetric (T,.a) parts of the DWF for real f , :  

A(Q) = ~f,~[ T~.c(Q) cos (Q .r~) 
t~ 

- T,~,a(Q) sin (Q.r~)]  (32b) 

B(Q) = Y~f~[ T,,,c(Q) sin (Q.r~)  
ot 

+ T~.a(Q) cos (Q.r~,)]. (32c) 

The coordinate r~ gives the atomic position in the 
usual (harmonic) sense, which however is no longer 
a well defined quantity in the presence of anharmonic 
terms as discussed below. 

Two different routes of access are conceivable: the 
first is by expressing the r.h.s, of (22) in terms of a 
restricted Hamiltonian (the so-called potential-based 
or physical approach); the second is by formally 
expanding the 1.h.s. of (22) in terms of moments or 
cumulants as given in (23) and (24) (so-called statis- 
tical approach). There is little to choose on general 
grounds in the case of the thermal DWF and both 
may be transferred into each other after the completed 
analysis. The limited applicability of one or the other 
is caused by mathematical short-comings as discussed 
in § 5. In the case of a static DWF a potential-based 
treatment makes no sense physically and a statistical 
approach appears more appropriate (Kuhs, 1983). 

Potential-based formalisms 

As discussed in § 3 there is no way to retrieve the 
information on interatomic coupling from an analysis 
of the thermal DWF despite the fact that it is influ- 
enced by correlated atomic motions. Consequently 
the atomic potential obtained from a crystallographic 
structure analysis has only a limited physical sig- 
nificance. This potential has been called the isolated- 
atom-potential (lAP) or one-particle-potential (OPP) 
and is the potential which an atom would experience 
on the average if all other atoms were located with a 
probability given by their respective p.d.f.'s at an 
arbitrary position, thus excluding the explicit effect 
of correlated displacements (see also Scheringer, 
1987). The OPP takes the same form as the crystal 
potential given in (9) with all indices/3, y , . . .  and l, 
l', l " , . . ,  dropped. Equation (22) then reads 

T~(Q) = [~ exp (iQu~) 

xexp[-V~PP(u~) / (kaT)]du~/Z  °PP (33) 

where Z °PP is the one-particle partition function 

z°PP=~exp[-V°PP(u)/(kBT)]du.  (34) 

Clearly such a potential is governed by the point- 
group symmetry of its averaged environment; this 
restricts to zero some terms which are allowed in the 
full crystal Hamiltonian (see e.g. Mair, 1985). 

The OPP approach has been chosen to fit experi- 
mental data by Dawson & Willis (1967) and Willis 
(1969) and was first formulated for cubic point-group 
symmetries. More recently it has been generalized by 
Tanaka & Marumo (1983) to any point-group sym- 
metry including terms up to fourth order. The general- 
ized OPP is given by 

= V h a  r ( U )  -~- )'ijk " t4 • "q- Oijkl  UtUJl, i k u  
o . 0  . • • , 

(35) 
R O P P  with yij°k PP and Uijkt being the third- and fourth-order 

anharmonic parameters, which are defined in an 
orthogonal coordinate system. The evaluation of the 
corresponding thermal DWF is done by approximat- 
ing the anharmonic part of the OPP in (33) by 

Vanh (u)/(kBT)]= 1 -  v°PP(u)/(kBT) (36) exp [ -  oPa 

in order to obtain closed algebraic expressions and 
a subsequent solution of the resulting Fourier 
integrals. Of course, the thermal DWF may also be 
calculated by numerical Fourier transformation (8a) 
of the atomic p.d.f., which is classically obtained from 
the Boltzmann function (here and in the following 
the atom label a is dropped) 

p.d.f .(u)=exp [ -v°PP(u ) / (kBT) ] /Z  °PP (37) 

with Zopp as given in (34). In the quantum regime 
vOPP in (33) has to be replaced by the corresponding gnrl 
one-particle Hamiltonian (Mair & Wilkins, 1976). 
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Other general formulations of the OPP model have 
been given by Coppens (1978), Kurki-Suonio, 
Merisalo & Peltonen (1979) and Scheringer (1985a). 
Coppens suggested the OPP of (35) expressing 
[within the approximation of (36)] the temperature 
factor by means of (reciprocal-space) Hermite poly- 
nominals G i j k . . .  (Q) (Erdelyi, 1953), which are con- 
tragredient with the crystal base vectors 

Tgnrl (Q)  = Thar (Q)  [ 1 -- 'rijk;" OPP['~ijk[~"~~ k'~.] 

~or'r" ~jk~ r r~ ~ l +UUkt '-' ~',tJJ. (38) 
O P P  5~OPP YOk and ~'Okt are covariant tensor components of 

the potential parameters. The idea was taken up later 
by Scheringer (1985a) who pointed out that this for- 
mulation avoids the tedious calculation of Fourier 
integrals. To express (38) he proposed a moment 
expansion of T(Q) [see (23)] to circumvent the direct 
use of the clumsy Hermite polynomials in a least- 
squares routine. An equivalent formulation by means 
of a cumulant expansion of T(Q) [see (24)] has been 
proposed by Mair (1980); for a comparison of the 
two approaches see Mackenzie & Mair (1985). Kurki- 
Suonio, Merisalo & Peltonen (1979) proposed the use 
of symmetrized harmonic oscillator wave functions 
expressed by means of polynomials* H~jkl... (U) to 
describe the anharmonic modulations of the OPP 

PP V~gdr ' (U) : V(ffhaPrP(U)[1 -- F,V .. ,  . . F,V , ~/ ijk l'l ijk ( U ) + ~ ijkl H qkl( U ) ]. 

(39) 

The expansion may be given conveniently only in 
Cartesian coordinates (or spherical and cylindrical 
coordinates) and yields with the approximation of 
(36) 

YOk Hqk(Q) Tg,.,r~(Q)=(1/P)Tha,.(Q)[1 - ~v , 

FIV t +6Ukt Hug,(Q)]. (40) 

Owing to the Fourier invariance (FIV) of H ' (Q)  the 
corresponding p.d.f.(u) assumes an identical form to 
(40) merely replacing H ' (Q)  by H'(u). P is a nor- 
malization factor containing contributions from all 
even-order higher-order terms. 

From the above-mentioned formulations, only the 
Willis approach with its variants has been routinely 
used in crystallographic work (for a list see Tanaka 
& Marumo, 1983). Although a great deal of useful 
work has been done in the past, the OPP approach 
in general suffers from the limited applicability in the 
case of stronger anharmonicities, which will be dis- 
cussed further in § 5. This limitation led Matsubara 

* There are two different types of Hermite polynomials. The first, 
denoted H~jkl. . .  (and the one of interest here), is encountered in 
solutions of Schr~Sdinger's equation for a harmonic oscillator 
potential. The second, denoted Hukt . . . ,  is frequently used in 
statistics to generalize a Gaussian p.d.f. (see below); the Hukt . . .  
do not possess the property of Fourier invariance in contrast to 
the H~jkl . . . .  

(1975a, b) to propose a formalism based on the so- 
called cumulant expansion of the harmonic DWF, 
which in fact is a statistical treatment discussed in 
the following. 

Statistical formalisms 

The physical relevance of the OPP parameters is 
fairly limited since they essentially give information 
on the soft and hard directions of atoms in a crystal 
structure. Thus another less artificial approach, which 
in addition turns out to be less restrictive, merits a 
detailed discussion. It has been introduced by 
Johnson (1969, 1970) and is based on a differential 
expansion of the atomic Gaussian p.d.f: 

p.d.f.g.~,(u) = p.d.f.h~(u)[ 1 - C'D, + (1/2!)C'JD, Dj 

-(1/3!)C'JkD, DjDk 

+(1/4!)cqktD,  D j D k D t - . . . + . . . ]  (41) 

where C i . . .  are tensorial coefficients (and thus valid 
in any metric) and D = 6/6u  denotes a differential 
operator. The Nth derivative D N of a trivariate 
Gaussian p.d.f, is a polynomial of degree N in u; 
these polynomials are known as Hermite poly- 
nomials* HN(u~ and are defined as 

Hug .... (u )  p .d . f .har(U)  

= ( - - 1 ) N ( 6 N / t ~ U i ~ U J t ~ u k .  . . t~u ' )  p .d . f .har(U).  (42 )  

They are evaluated by summing over all permutations 
of i, j, k , . . . ,  n for all polynomial terms (Johnson & 
Levy, 1974; Zucker & Schulz, 1982). 

The retention of first- and second-order anhar- 
monic terms in (41) is common practice in statistics 
and has also been suggested for crystallographic use 
(Johnson, 1969). In this treatment a conventional 
harmonic least-squares refinement yields the mean 
and the standard deviation of the harmonic p.d.f. The 
first- and second-order anharmonic terms are 
obtained as shifts of mean and standard deviation 
from the conventional values in a structure refinement 
including higher-order terms. However, in practice 
the first- and third- as well as the second- and fourth- 
order terms are often highly correlated and an 
independent estimate of each cannot be obtained. 
Thus the first- and second-order anharmonic terms 
are usually set to zero (to form a so-called standard- 
ized anharmonic p.d.f.). This means that, in a higher- 
order refinement, the mean and the standard devi- 
ation of the harmonic part include the anharmonic 
shifts of atomic position and dispersion respectively 
and have lost the universal meaning which they have 
in a purely harmonic case. The refined first-order term 
corresponds now to the three-dimensionally time- 
space averaged position (the so-called mean) and 

* See previous footnote. 
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usually does not coincide any longer with the 
maximum of the p.d.f., which is found at the so-called 
mode position. When it comes to the calculation of 
interatomic distances (using specific mechanistic 
models) yet another position may be introduced, 
which corresponds to the equilibrium position at a 
given temperature along a given direction (one- 
dimensional time-space average as discussed in § 6). 
In general this position is different again from either 
mean or mode position. 

There are different ways of expressing the tensorial 
coefficients in (41). In statistics they are defined via 
generating functions. A generating function is a 
characteristic function (in the terminology of statis- 
tics) and is just the Fourier transform of the p.d.f. 
The tensorial coefficients may now be expressed in 
terms of moments p. of the p.d.f. (u). The moment 
generating function [given in (23)] is reformulated 
for this purpose as 

oo 

M ( Q ) =  Y~ ( i N / N I ) Q ,  Q j Q k . . .  Q,,I ~Uk .... . (43) 
N = 0  

Thus/x Uk .... is the coefficient of Q N / N !  in the Fourier 
transform of the atomic p.d.f. (which is assumed to 
be fairly Gaussian) and hence the moments may also 
be expressed by 

la, Ok .... = ~ UiUJUk. . . U" p.d.f.(u) du. (44) 

The m o m e n t s  Idb ijk . . . .  may be expressed in terms of 
cumulant K ijk .... (and vice versa) as defined in (24). 
In standardized form one obtains (Kendall & Stewart, 
1977) 

i i 
/Z = K  

i ~  ~J = K zJ 

]1, qk = K qk 

(45) 
ijkl = K ijkl ._~ 3 K ~J K kt tl. 

[£ i jk lm = K qklm .+ l o K i j k K l m  

ijklmn K i jklmn .21_ 1 5 K ijklK mn 

+ l O K i j k K I m n  + 1 5 K i J l ~ k I K  m"  

In some way the cumulants seem a better measure of 
anharmonicity as they are free from trivial contribu- 
tions of lower-order terms. The cumulant generating 
function K(Q) is easily deduced from (24) and is 
given as 

K ( Q ) -  exp [M(Q)]  

This exponential series in Q yields the temperature 
factor (given up to fourth order) 

• ijk 
TEw(Q ) -- Thar(Q) exp [-ITEwQiQjQk 

ijkl + 6EwQ, QjQkQI] (47) 
,,, ijk R ijkl with fEW and ~'EW as cumulants* of order three 

and four respectively and That(Q) containing the 
cumulant of second order (while the first cumulant 
corresponds to the atomic position in the structure- 
factor equation). The label EW denotes an Edgeworth 
series defined in real space, which is chosen according 
to statistical practice. Another approach known in 
statistics as a quasi-moment expansion turns out to 
be even more useful in crystallographic applications. 
Here the tensorial coefficients are expressed in terms 
of quasimoments fi.~jk ..... which are defined by the 
generating function/~/(Q) (Kuznetsov, Stratonovich 
& Tikhonov, 1960), 

/~/(Q) - exp [½((Q. u)2)] 

x [  ~N=o/2ijk .... ( i N / N , ) Q i Q j Q k . . . Q , , I ,  (48) 

with the corresponding temperature factor given (up 
to sixth order) as 

• ijk ijkl 
TGc(Q) = That(Q)[ 1 -- ZvGcQ,QjQk + 6GcQ~QjQkQ, 

• ijklm 
+ IeGC QiQjQkQIQm 

ijklmn 
- ~cc QiQjQkQIQ,,Q,] (49) 

,, ijk and rGc etc. as tensorial quasimoments*; the label 
GC denotes Gram-Charlier series, which is the name 
given in statistics to the real-space counterpart. 

It is easily seen by comparing (47) and (49) that 
both expressions are identical if all terms up to infinity 
are included (by virtue of the identity exp ( iQ)=  
~ ( i Q ) N / N ! ) .  For a finite series, however, the 
cumulants of order N carry implicit information on 
contributions of order N 2, N 3 etc. in contrast to the 
quasi-moments; in the Gram-Charlier temperature 
factor (49) these contributions have to be introduced 
explicitly. The important advantage of the Gram- 
Charlier formulation is its straightforward calculation 
of the corresponding p.d.f: 

ijk 
p.d.f.Gc(u) = p.d.f.har(U)[ 1 + (1/30"YGcHok(U) 

+(1/4!) ijkl (~GcHokI(U) 

~oc ,,uk,m(u) 
-~-(1 / g l] FiJ k lmn • /'-'.SSGC Hijkl,,,,(U)]. (50) 

Owing to the implicit higher-order terms in the 
Edgeworth temperature factor the exact evaluation 

= e x p I ~ = l K i j k  .... ( i N / N ! ) Q i Q j Q k  . . .  Q , ] .  

(46) 

* The tensorial cumulants and quasimoments of different order 
are designated with greek letters for better distinction. They some- 
times contain numerical factors of powers of 2~r corresponding to 
the transformation of Q into 2~rH. 
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of the corresponding p.d.f, is practically impossible limitations may be found in the literature (Kuhs, 
and may be done only in an approximate way. 1988a) and is repeated here in a more concise form. 

Ok p.d.f.Ew(u) = p.d.f.har(U)[1 +(1/3!)TEwHijk(U) 
• ijkl +(1/ 4 V)6EwHijkI(U) 

+(10/6  v~.jrEwijk ytm,Hijktm,,(U)] (51) 

is the form suggested by Edgeworth (1905) on the 
basis of statistical arguments on the relative import- 
ance of higher-order terms (which may or may not 
be valid in a specific case under consideration). In 
this approximation the quasimoments and cumulants 
are related by 

),Ok , , ,ok R i j k l  R i j k l  
G C  = Y E W  ~ ' G C  = ~ E W  

~ i j k l m n  F i j k lmn  ,~ ijk ., lmn 
Gc SEW +(10/6! )  = Y E W Y E W  • 

(52) 

Owing to the tensorial character of cumulants and 
quasimoments any symmetry restrictions are easily 
introduced in the least-squares procedure. The con- 
straints have been tabulated by Johnson & Levy 
(1974) up to fourth order and Kuhs (1984) up to 
eighth order. 

The statistical approach is well suited to cope not 
only with lattice anharmonicity but also with any 
higher-order static displacements and in fact has been 
used for a description of a variety of disordered 
crystallographic structures (Kuhs, 1983). Finally, it 
should be mentioned that the tensorial coefficients of 
the statistical approach may be transformed into OPP 
parameters by equating terms of equal Q dependency 
(e.g. Kontio & Stevens, 1982) and thus exhibit a well 
defined temperature dependency as expected from 
lattice dynamics (and in contrast to some statements 
in the literature)• Thus, the square root of the third- 
order terms and the cube root of the fourth-order 
terms are expected to be proportional to the absolute 
temperature in the classical regime. Furthermore an 
OPP may always be calculated with the aid of the 
Boltzmann function (37) as 

v°PP(u) = -kBT{ln  [p .d . f . (u ) ] -  In [p.d.f.(u = o)]}. 
(53) 

The question now arises whether all approaches pres- 
ented in this section perform equally well. This is 
discussed best by considering some important limita- 
tions inherent in the different formalisms. 

5. Limitations 

There are different limitations to all formalisms dis- 
cussed in the previous section. Some of them are of 
a fundamental nature, while others are imposed by 
more practical considerations. A discussion of these 

Mathematical restrictions 
The series expansions with tensorial coefficients 

used in a generalized DWF are mathematically com- 
plete and cannot be extended to give a better approxi- 
mation to the true DWF, which is the Fourier trans- 
form of the Boltzmann p.d.f. (= the true atomic p.d.f.) 
or of the corresponding quantum expression. Of 
course there is no guarantee that the generally well 
justified assumptions made in deriving the formalisms 
(perturbation of the OPP or Gaussian p.d.f.) 
automatically lead to an appropriate description of 
the physical situation. Likewise it is a matter of belief 
that a more flexible model automatically gives a better 
approximation to the truth, a case which can be 
decided upon only by comparison with experimental 
data. A model, however, must always fulfil certain 
conditions to be useful for a general description of 
anharmonic systems. Divergencies in both real- and 
reciprocal-space expressions must not occur as they 
are unphysical. Likewise, the p.d.f, should be positive 
definite everywhere to be physically meaningful. In 
addition, exact Fourier.transformability would be a 
useful feature; however, it is not essential as numeri- 
cal Fourier transformations are well within the reach 
of present day computing facilities. The performance 
of the different approaches relative to these points 
will be discussed• The approximation exp ( - x )  = 1 - x 
made in all generalized OPP formalisms obtained by 
a perturbation treatment limits their validity to rela- 
tively small anharmonicities if only a limited number 
of terms in included, and often makes them unsuitable 
for the description of disordered systems. However, 
problem-specific potential shapes may be introduced 
and treated in an exact manner (e.g. Mair, 1982, 1983). 
The ambiguity in the Fourier transforms of the gen- 
eralized OPP formalisms as they are found in the 
literature (e.g. Willis, 1969; Kontio & Stevens, 1982; 
Tanaka & Marumo, 1983; Scheringer, 1985a) is not 
of a fundamental nature but is due to the omission 
of higher-order terms, which may or may not be 
important in a given case. The full expression for the 
anharmonic OPP temperature factor up to second 
order in the perturbation treatment is given by 
Mackenzie & Mair (1985). The knowledge of the 
Fourier transform (exact to a given order in the per- 
turbation) is important in the interpretation of results 
obtained by a crystallographic least-squares refine- 
ment. It is exactly known for the OPP formalisms 
and the Gram-Charl ier  approach but is not available 
in a closed form for the Edgeworth case as has been 
discussed in the previous chapter. This suggests the 
use of the Gram-Charl ier  rather than the Edgeworth 
series even when the latter gives a better fit to the 
observations due to the implicit higher-order terms• 
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If considered necessary these higher-order terms 
(usually of sixth order) may be introduced explicitly 
in a Gram-Charlier formulation. Real and reciprocal- 
space divergencies as well as the condition of positive 
definiteness of the p.d.f, turn out to be a severe mathe- 
matical limitation of all formalisms presented here 
and their respective range of applicability has to be 
assessed carefully. Divergent series expansions have 
no exact Fourier transforms. A theorem by Marcinki- 
ewicz (1938) states that even a convergent exponential 
series with terms higher than second order can never 
be the Fourier transform of a p.d.f, in the mathemati- 
cal sense because such a p.d.f, always has negative 
regions. This theorem has been extended to three 
dimensions and imaginary terms by Gromes (Scherin- 
ger, 1985b). Thus inspection of (47) immediately rules 
out the Edgeworth form of the temperature factor as 
a mathematically acceptable Fourier transform of 
(51). If one tolerates small negative regions in the 
p.d.f, one may however accept the Edgeworth formu- 
lations (Scheringer, 1985b) for practical work. Much 
more problematic is the divergency of the Edgeworth 
series in reciprocal space (37) as it affects directly 
the least-squares-refinement procedure. Owing to 
its exponential form, divergencies always occur 
in the presence of higher-order terms at finite Q. 
This means that inclusion of data at higher Q will 
increasingly invalidate the results in contrast to first 
expectations and it is only due to the limited range 
of experimental observations that the Edgeworth 
approach has been successful in the past. Moreover, 
owing to the exponential form of (47), strongly anhar- 
monic or disordered systems cannot be modelled 
because the temperature factor of such a system is 
negative at higher values of Q ('out-of-phase' scatter- 
ing). A similar situation with respect to positive 
definiteness arises for the OPP p.d.f.'s (Mackenzie 
& Mair, 1985). The inverse Fourier transform of  the 
OPP temperature factor is only an approximation of 
the exact Boltzmann p.d.f, given formally in (37).* 
Either the corresponding temperature factor given in 
(38) is divergent (Scheringer, 1985a) or the resulting 
p.d.f, is not everywhere positive definite. Good agree- 
ment with the exact Boltzmann p.d.f, is obtained only 
for weak anharmonicities and can never be fully 
achieved. A possible way out is to express the tem- 
perature factor of the exact Boltzmann p.d.f, by 
numerical Fourier transformation. The mathematical 
limitations in the case of the Gram-Charlier approach 
are not of a fundamental nature. Of course there exist 
parameter combinations which yield a locally nega- 
tive p.d.f., but the negative definiteness apparently is 
not of intrinsic mathematical nature if only a limited 
number of terms is included. Conditions for positive 

* The exact Boltzmann p.d.f, is obta ined with the unknown,  yet 
to be established, OPP. The OPP in the form of  (35) is not an 
exact approximat ion  of  the true OPP as discussed above. 

definiteness have been discussed by Kuhs (1983) and 
Scheringer (1988); the negative volume of the Gram- 
Charlier p.d.f, is found to be always smaller than for 
the corresponding Edgeworth case. It seems accep- 
table to allow for slightly negative volumes in the 
p.d.f, at least as long as they are commensurable with 
the experimental error. It is worth mentioning that in 
the Gram-Charlier case divergencies in reciprocal 
space do not occur, nor do restrictions concerning 
the out-of-phase scattering exist. Thus it appears that 
the Gram-Charlier approach is the most flexible and 
least mathematically restricted way to describe gen- 
eralized atomic displacements in crystal structures of 
all formalisms presented here. 

Phase indeterminacy 

The different mathematical expressions for the 
Edgeworth and the Gram-Charlier temperature fac- 
tor [(47) and (49) respectively] have led to a con- 
troversy as to whether the Gram-Charlier approach 
allows us to overcome the indeterminacy of the phase 
in the structure-factor equation on including odd- 
order terms for acentric structures (Nelmes & Tun, 
1987, 1988; Hansen, 1988). Certainly the mathemati- 
cal form of the Gram-Charlier temperature factor 
allows for intensity changes, while the Edgeworth 
expression only gives rise to a phase shift. Thus the 
magnitude of certain terms in acentric structures can- 
not be refined in this case: Hazell & Willis (1978) 
have established rules specifying which terms have 
to be kept fixed in the least-squares refinement. As 
the Gram-Charlier and the Edgeworth series are iden- 
tical if all terms up to infinity are included, this 
indeterminacy also holds for the limiting Gram- 
Charlier temperature factor. The truncated Gram- 
Charlier series formally does not suffer from indeter- 
minacy in a mathematical sense. However, in the case 
of small anharmonicities the difference between the 
Gram-Charlier and the Edgeworth cases is very small 
[corresponding to the difference between exp ( - y )  
and 1 - y ]  and almost singular normal equation 
matrices occur in the Gram-Charlier least-squares 
refinement preventing a meaningful determination of 
the odd-order terms in question. It is only in the case 
of disorder involving out-of-phase scattering that con- 
vergent refinements may be obtained. It is remem- 
bered that out-of-phase scattering may also be mod- 
elled by introducing split-atom positions, which 
similarly are allowed to be freely refined as long as 
one atom in the unit cell is (arbitrarily) kept fixed. 
In all other cases structure refinements will be near 
divergency and addition of higher powers of the 
odd-order terms in the Gram-Charlier temperature 
factor [corresponding to the approximation of 
exp (-3 ')  by a Taylor-series expansion] will further 
destabilize the structure refinements. Probes other 
than diffraction (e.g. light scattering) have to be used 
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to establish the relative importance of ambiguous 
terms in the crystal potential for acentric structures. 

The case of  X-rays 

The formal separation of atomic form factor and 
DWF as expressed in (6) needs some discussion. 
Clearly in the case of neutrons this separation is 
straightforward as the nuclear form factor is a con- 
stant. The situation is different for X-rays and some 
interference of the parameters describing asphericity 
in electron densities with the ones describing non- 
Gaussian atomic p.d.f.'s is expected in a least-squares 
refinement. Indeed, there is a close mathematical 
resemblance of the formalisms used for the two 
effects. The main difference is that electronic 
asphericities like multipole deformations mainly con- 
cern the valence electrons while anharmonic defor- 
mations affect the whole atom. Thus the sensitive 
range in reciprocal space is generally at lower Q for 
multipole deformations and measurements to Q 
values as high as possible are always indicated. As 
the sensitive range for anharmonic deformations is 
linked to the magnitude of thermal motion (as dis- 
cussed below) one may improve the separation by 
working at low temperatures and a temperature- 
dependent study will help to clarify the interference 
between charge distribution and anharmonic effects. 
Yet a complete separation can never be achieved 
when considering only one of the two effects as has 
been shown by Mallison, Koritsansky, Elkaim, Li & 
Coppens (1988). If electronic charge asphericity and 
anharmonic thermal motion (or disorder) are suspec- 
ted to exist together for the same atom, a sufficient 
decorrelation may however be obtained by a com- 
bined refinement of multipole and anharmonic 
parameters. One should also be aware of the fact that 
isotropic anharmonic modulations may be correlated 
with the radial part of the electronic charge distribu- 
tion. In case of doubt independent information on 
the anharmonicity must be gained from a neutron 
diffraction study. Neutron diffraction remains in gen- 
eral the best way of establishing the anharmonic DWF 
except possibly in cases where extremely weak reflec- 
tions carry all information on anharmonicity. The 
dynamic range of neutron diffraction is certainly 
much smaller than what is available on modern syn- 
chrotron sources, yet this is partially offset by the 
gain at high angles due to the constant form factor 
and the complete insensitivity to the charge distribu- 
tion of the nuclear interaction of the neutrons. 

previous sections. It is remembered that the relative 
changes of the p.d.f, due to anharmonicity or disorder 
at small displacements are a few per cent of the total 
probability density in most cases. At larger displace- 
ments the relative changes become increasingly 
greater, but the influence on the Bragg intensity data 
becomes less important. The relative effect of anhar- 
monicity or disorder on the DWF is increasing with 
Q, however the greatest absolute change of the DWF 
is expected at some finite value of Q. It may be 
calculated by taking the derivatives of the generalized 
DWF expressions (Kuhs, 1988a) and is given in the 
Gram-Charl ier  case by 

Qn = 2nl/Z(2,n-)-l/2(21n 2)l/2(u2) -1/2 (54) 

where n is the order of the anharmonic terms and 
(u 2) is the mean square displacement of the atom in 
the direction of interest. As a rule of thumb the data 
collection has to be extended at least out to Qn for 
refining successfully terms of order n. Many attempts 
to determine higher-order terms in the DWF appear 
to have failed because the data set was not measured 
at sufficiently high resolution, rather than because of 
deficiencies in the models or the quality of the data. 
Evidently the quality of the data has to be com- 
mensurate with the size of the anharmonic effect to 
be investigated. Thus higher-order terms are easily 
established in strongly anharmonic systems like fast 
ionic conductors and need considerably better quality 
data in materials with strong covalent or ionic bond- 
ing. The level at which higher-order terms are mean- 
ingful should be monitored by calculating difference 
Fourier maps together with the corresponding error 
maps. Often the large number of independent higher- 
order terms, especially in low-symmetry structures, 
has been considered as a drawback to all the formal- 
isms. However, the increased dynamic range of 
modern X-ray and neutron diffractometers in general 
allows a sufficient number of independent data to be 
collected by going to smaller wavelengths (see Kuhs, 
1988b) and thus to overdetermine the problem by a 
factor of five to ten even when fourth-order terms are 
considered. Moreover, insignificant terms may be set 
to zero and 'chemical'  constraints on the different 
tensor components could be introduced thus reducing 
the number of freely refined parameters. With such 
precautions meaningful higher-order terms may 
be obtained from any crystalline material as has 
been demonstrated by an increasing number of 
publications. 

Experimental limitations 

For a successful determination of higher-order 
terms in the DWF it is important to be aware of some 
restrictions imposed by the quality and the extent of 
the Bragg intensity data; the general disclaimer con- 
cerning X-ray data has been discussed already in the 

6. Aids in the interpretation 

The purpose of a diffraction experiment is to obtain 
a better understanding of the physics or chemistry of 
a material. How can one extract the relevant informa- 
tion from the large number of higher-order terms 
established by a least-squares-refinement procedure? 
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There are several ways to condense the wealth of 
information into numbers related to physical quan- 
tities of interest or into maps of immediate evidence, 
and some of them will be discussed in this section. 
The first step of the analysis must be the assessment 
of the significance of the results obtained. The 
minimal requirement is that the improvement in the 
quality of fit by the addition of anharmonic terms 
satisfies statistical tests. The refinement process itself 
should be controlled closely as the high parameter 
correlations typically encountered between terms of 
order n and n +2 may lead to spurious results; it is 
often necessary to add higher-order terms in several 
steps before all parameters can be freely refined. 
These precautions are vital as very often the refined 
anharmonic parameters are not highly significant. 
Before far-reaching conclusions are drawn it is wise 
to repeat the analysis with an independently measured 
data set. An important check on the consistency of 
the results is performed by a calculation of the p.d.f. 
(or the OPP) from the least-squares estimated param- 
eters. Strongly negative regions of the p.d.f, or diver- 
gencies in the OPP especially near the atomic posi- 
tions are unphysical and the refined parameters must 
be considered as unreliable. There is good evidence 
that such results are in general not due to deficiencies 
in the model, but rather due to deficiencies (e .g .  
systematic errors) in the data (Kuhs, 1988a). As men- 
tioned in the previous section one may tolerate nega- 
tive regions far from the atomic position if they are 
considered as insignificant. Likewise, divergencies or 
unboundedness of the OPP are not a serious problem 
as long as they occur in regions of real space insig- 
nificantly populated at the temperature of the diffrac- 
tion experiment. Thus the errors in the p.d.f, or OPP 
have to be established. This has not been done very 
often in the past as it is cumbersome to do analytically. 
A Monte-Carlo technique allows for a mathematically 
exact and yet easily realizable calculation of the vari- 
ances (and also the covariances) of a p.d.f, map. 
Details of this method are given in the Appendix. 
The inspection of the p.d.f, together with its error 
p.d.f, immediately shows the significant features due 
to higher-order terms of the DWF, the action of which 
in real space is not easily predicted otherwise. The 
calculation and display of p.d.f, or OPP maps is 
usually a very efficient way of presenting the results 
in a digestible way. As the anharmonic modulations 
are usually small, it is more appropriate to display 
the anharmonic deformation densities P.d.f.der (or the 
disorder deformation densities in the case of a static 
DWF) together with error maps instead of the total 
P.d.f.gnrl : 

P.d.f.def(U) = p.d.f.gnd(U) - p.d.f.har(U). (55) 

When pure third- or pure fourth-order contributions 
are displayed they are called skew and kurtosis maps 
respectively. Of course, Fourier maps may also be 

used; they suffer, however, from series-termination 
effects and necessitate a complete set of data, which 
is not always reliably available. 

The full information content of the anharmonic 
terms (which should be given in units of ,~ rather 
than as dimensionless quantities* to allow for a better 
comparison) may be condensed to provide single 
numbers for a discussion of the underlying physics. 
A very useful operation in this respect is a tensor 
contraction (see e.g. Hamermesh, 1962; Pach & Frey, 
1964). Invariants of a higher-order tensor of rank N 
with N even (it is recalled that many anharmonic 
models operate with tensorial coefficients as discussed 
in § 4) are obtained by full contraction with the com- 
ponents of the real-space metric tensor go 

NIo = gijgkl . . . gmnfl  Okl ... . . .  (56) 

NIo is also called the trace of a tensor of rank N. In 
a similar way, vector invariants of odd-rank tensors 
may be calculated 

N D i  = g j k "  " " g . . . .  ~ i j k  . . . . .  (57) 

where v ~ is called the 23 trace (e tc . ) .  The scalar 
invariant N I  o gives a global number for even-order 
anharmonic terms: in the case of a Gram-Charlier 
treatment negative values indicate flatness of the p.d.f. 
or, more specifically, disorder in the case of a static 
DWF, while positive values indicate peakedness of 
the p.d.f, compared with a Gaussian distribution. 
Likewise, the vector NV~ gives the direction of the 
maximal skewness of the p.d.f. (which can be related 
to the atomic shift vectors in the case of structural 
phase transitions). Partial contraction is sometimes 
useful in order to access directional aspects of gen- 
eralized p.d.f.'s. The elements of the second-order 
tensor NdO obtained by the contraction 

N d i J  = g k l "  " " g m n f l  i jkl  . . . . .  ( 5 8 )  

from the full fourth- or sixth-order tensor reveal the 
directions of peakedness or flatness in the p.d.f. It 
may be useful in some cases to expand the contracted 
tensor in order to quantify the higher-order 
anisotropy 

~ijkl . . . . .  = N I o [ ( N + l ) ! ] - l p ( g O g k t . . . g m n  ) (59) 

where P is a permutation operator for full interchange .. 

of indices and g'J etc. is a component of the reciprocal- 
space metric tensor. The higher-order anisotropy is 
then given as 

A /3 ijk, .. . . . .  = fl Ok, ..... _/~0k, ..... (60) 

* The least-squares programs in general operate with dimension- 
less quantities/3 ~;k ..... . They may be transformed according to 

,,,jk ..... =[ NS/(2~)N]I3 "k ..... la'l-'laJl-'lakl-'...la"t-' 
(no summation) into quantities of units ,& r,. a' etc. are reciprocal- 
lattice vectors. 
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(no summation). Equation (59) also allows parameter 
constraints to be derived for higher-order tensors in 
the case of imposed isotropy or second-order 
anisotropy. This may be useful in order to reduce the 
number of freely refined parameters. 

The higher-order moments/-LN of the total p.d.f, in 
a certain direction u are obtained numerically as 

#r~(u) = J" u N p.d.f.(u) du (61) 

and may be further analysed in terms of coefficients 
of skewness and kurtosis (Kuhs, 1988a). ~l(u) gives 
the shift of the atomic position from the refined value 
and may be used in certain cases (assuming a specific 
model of coupled motion) to get a better estimate of 
the bond distance. 

All manipulations described above are helpful 
to gain some insight into the physical origin of anhar- 
monic atomic displacements, mainly because they 
clarify directional aspects. Those aspects are often 
buried under the large number of independent tensor 
components, which in turn may have been a deterrant 
to including an anharmonic DWF altogether. 

7. Future work 

From the preceding discussion it emerges that a sound 
base, both theoretically and experimentally, has been 
established for a detailed investigation ofanharmonic 
behaviour in the crystalline state by diffraction 
methods. Still, such an analysis is not yet straight- 
forward for a variety of reasons. On the experimental 
side considerable effort is needed to obtain diffraction 
data of highest quality. Multiple diffraction effects 
need to be surveyed closely in cases where weak 
reflections carry the crucial information on higher- 
order displacement parameters. While the effect of 
uncorrected thermal diffuse scattering on the har- 
monic DWF is reasonably well known, the effect on 
higher-order terms has not yet been studied in a 
systematic way. It is not likely to be negligible. Thus, 
in addition to the generally applied corrections to 
Bragg intensity data, both the effects of multiple 
diffraction and thermal diffuse scattering should be 
considered in studies of the anharmonic DWF. Gen- 
erally, single-crystal studies give the best results, 
however neutron powder diffraction work has been 
shown to give significant answers at least for strongly 
anharmonic systems (e.g. Yude, Boysen & Schulz, 
1990). 

Some topics of interest for future experimental 
work will probably be the study of the anharmonic 
DWF near phase transitions and especially near the 
melting transition, where no high-quality data are 
available at all. Temperature stabilities of a few hun- 
dredths of a degree over long periods necessary to 
perform such work are now routinely available on 
several four-circle diffractometers. It must be remem- 
bered that lattice anharmonicity and/or  positional 

disorder in the solid phase are ingredients of most 
theories of melting and much could be learned from 
diffraction experiments on the role both of them play 
for the melting transition. In more classical fields of 
structure analysis involving anharmonic displace- 
ment parameters, as in the study of fast ionic conduc- 
tors or molecular crystals, work will certainly con- 
tinue. The latter will profit from a general inclusion 
of higher-order terms (especially of third order), poss- 
ibly constraint in so-called TLS models of thermal 
motion. This could help to get more realistic inter- 
atomic distances, even if a more thorough analysis 
of the higher-order terms is not carried out. The 
mathematical formulation for this approach was 
worked out a long time ago (Prince & Finger, 1973). 
It is only a matter of applying it in least-squares 
structure refinements. 

With respect to theory a variety of analytical 
approaches is available to calculate anharmonic inter- 
actions in general and the anharmonic DWF in par- 
ticular starting from interatomic potentials or force 
constants. For weakly anharmonic systems perturba- 
tire approaches seem fully satisfactory, while strongly 
anharmonic systems usually are treated with renor- 
malized harmonic models with residual anharmonic 
corrections. Crystals near ferroelectric phase transi- 
tions, fast ionic conductors, rotationally disordered 
solids and quantum crystals are typical examples of 
strongly anharmonic systems. It is likely that crystals 
near the melting point also behave in a strongly 
anharmonic fashion, yet the lack of experimental data 
prevents a definite statement on this point. The above- 
mentioned computational procedures are applicable 
in practice only to simple crystal structures. More 
complicated systems may be analysed by Monte- 
Carlo or molecular-dynamics simulations, again 
based on assumed or calculated interatomic poten- 
tials, usually effective pair potentials. But, even then, 
due to the large number of possible atomic interac- 
tions, some simplifying assumptions still have to be 
made. Monte-Carlo or molecular-dynamics simula- 
tions provide m.s.d.'s and higher-order displacement 
parameters directly, which can be used for a com- 
parison with crystallographic results. 

It appears that comparisons between theoretical 
and experimental DWF's will be fruitful in several 
respects. For simple systems (like metals or ionic 
solids) a very detailed cross-check of theory and 
experiment may be performed, possibly calling for 
even further improved experimental data or a revision 
of current theories. Unfortunately this has been rarely 
done in the past, possibly because the results are 
sometimes not directly comparable. The experi- 
mentally obtained cumulants, quasi-moments or OPP 
parameters have often to be expressed in terms of 
anharmonic contributions to the DWF obtained in 
theoretical calculations, a transformation which 
could be done straightforwardly, if not analytically, 
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then at least numerically. For more complicated sys- 
tems the experimental results obtained in a diffraction 
experiment are more accurate at present than the 
results of theoretical calculations, a fact which could 
be used as a guide for improvements in the theory. 
Again this does not seem to happen very often, prob- 
ably because the crystallographic community and 
theoretical physicists working in this field are not in 
close contact with each other. It should be mentioned 
in this context that experimental techniques other 
than diffraction are frequently used to study anhar- 
monicity on the atomic level, the more prominent 
ones being I R and Raman spectroscopy, inelastic 
neutron scattering and EXAFS. These methods are 
extremely useful in many cases as they give very 
accurate information on specific anharmonic interac- 
tions. However, none of these methods allows us to 
locate straightforwardly the individual anharmonic 
contributions of all atoms in arbitrary directions and 
the analysis of more complicated systems becomes 
increasingly difficult. It is the advantage of diffraction 
techniques that they provide useful data almost 
routinely on the anharmonic DWF even in the most 
complicated crystal structures. There is no reason why 
anharmonic motions of structural units in large 
molecules of biological interest could not be analysed 
on the basis of good-quality diffraction data. 

In considering the static DWF, the situation on the 
theoretical side seems to be less favourable for reasons 
discussed in § 3. It appears that an adequate theory 
has yet to be worked out for the specific problem 
under investigation. It also appears that studies of 
the diffuse scattering should accompany the analysis 
of the static DWF whenever possible. There is clearly 
a need for more work to be done in this field on such 
different materials as disordered molecular crystals, 
non-stoichiometric compounds, alloys, metal 
hydrides and minerals with variable chemical compo- 
sition. This will eventually give experimental access 
to the force fields near defect lattice sites or at least 
it will provide more realistic interatomic distances 
and angles in these systems. 

It is hoped that the state of affairs presented in this 
work is helpful to the reader interested in venturing 
into a certainly intricate, but undoubtedly very reveal- 
ing, field of solid-state research. 

APPENDIX 

Monte-Carlo error estimation for density maps 

The calculation of errors in p.d.f, maps is of crucial 
importance for assessing the significance of higher- 
order modulations in real space. The least-squares- 
estimated quantities used in the p.d.f, calculation are 
the harmonic displacement parameters, which enter 
as components of P, the inverse of the dispersion 
matrix U, into the Hermite polynomials, see (16), and 
the components of the higher-order displacement 

tensors, which enter as coefficients in (39), (50) or 
(51). The resulting expressions are fairly lengthy and 
an error calculation including parameter correlations 
(which are often >0.90) is very cumbersome. One 
seeks to calculate the variance p.d.f.l~'(n) around the 
mean p.d.f.(u): 

p.d.f. ''~ (u) = ([p.d.f.(u) - p.d.f.(u)]2) 

= I I . . .  I [ p . d . f . ( p , , p 2 , . . . p , , u ) ]  2 
Pl P2_ P,, 

x J ( p l , P 2 , . . . , p , ) d p l d p 2 . . . d p , ,  (A1) 

where J (  p~ , P2 , • • • ,  P ,  ) is the joint probability density 
function for all parameters. A mathematically correct 
way to evaluate the multiple integral is by Monte- 
Carlo simulation. The Monte-Carlo (MC) method 
allows us to include easily the full variance-covari- 
ance matrix V of the least-squares estimation of the 
n refined parameters p. The parameters taken into 
consideration may be restricted to the atom of interest 
or may include all refined parameters. The following 
steps need to be taken: 

(1) Generation of random numbers R. There is 
a variety of random number generators on almost any 
computer, although not all perform equally well (see 
James, 1980). A generator of the multiplicative con- 
gruential type providing pseudo-random numbers R 
in the range 0 < _ R < 1 is generally sufficient for our 
purpose 

(2) Generation of Gaussian-distributed numbers 
R 6. A computationally very efficient way ofproducing 
R ~ is by the method of Box & Muller (1958), which 
produces a pair of pseudo-random numbers 

R~ = ( -2  in R l )  ~/2 cos (27rR2) (A2a) 

R~ = ( -2  In R~) ~/2 sin (2rrR2). (A2b) 

(3) Generation of correlated random numbers R (. 
This is achieved with the aid of the "square-root' 
method (see James, 1980). The vector of dimension 
n of Gaussian-random numbers is modified by the 
lower-triangular matrix C 

R c = C ' R  c. (A3) 

The matrix C is calculated from the variance-covari- 
ance matrix V with the following recursive procedure 
(James, 1980): 

C,, V , , /  v , / 2  = -i1 1 <- i<_ n (A4a) 

C,; = V,.;- C~2k 1 < i<_ n (A4b) 
k=l 

( Y, )/ Cij = E j -  Cikfjk Cjj l < j < i < _ n .  ( A 4 c )  

(4) Modification of the parameters p~ . . .  p,, with 
the n-dimensional array of correlated random 
numbers R" 

pMC = P -F R c. (A5) 
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(5) Ca lcu la t ion  o f  the  p.d.f, wi th  the  mod i f i ed  
paramete rs .  

(6) A c c u m u l a t i o n  o f  the  dev ia t ions  for each  pixel  
u for the  p.d.f, map.  It has b e e n  f o u n d  that  10 000 
MC steps are sufficient to ob ta in  conve rgency  in all 
cases (usual ly  1000 M C  steps suffice). It is poss ib le  
to a ccumula t e  posi t ive  and  nega t ive  dev ia t ions  separ-  
ately, h o w e v e r  the lo" r o o t - m e a n - s q u a r e  dev ia t ions  
p.d.f.lW(u) seem to be a g o o d  n u m b e r  for mos t  pur-  
poses.  The  results may  be d i sp layed  in an mo- 
con f idence  m a p  for a n h a r m o n i c  (or  d i sorder )  defor-  
m a t i o n  dens i t ies  p.d.f.def(U), see (55)" 

• . raw confidence/ \ 
p.O.Laer tU) = p.d.f.der(U) -- sgn [p.d.f.oer(U)] 

Ity 
x m  p.d.f.def(U) (A6)  

w h e r e  sgn is the  sign func t ion .  
If  it appears  in te res t ing  one  cou ld  also calcula te  

the  covar iances  b e t w e e n  two pixels Ul and  u2 o f  the  
m a p  wi th  the same p rocedure .  The  MC m e t h o d  pres- 
en t ed  here  may  also be  u sed  to calcula te  the  errors 
in o the r  leas t -squares  f i l tered maps  (e.g. mul t i po l e  
d e f o r m a t i o n  densi t ies) .  An  M C  ca lcu la t ion  of  this 
type has been  i n c l u d e d  in a new vers ion  o f  the  pro-  
g ram system P R O M E T H E U S  (Zucker ,  Perentha ler ,  
Kuhs ,  B a c h m a n n  & Schulz,  1983). 
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Abstract 

There are two classic limiting solutions for the diffrac- 
tion profile and integrated intensity of Bragg reflec- 
tions from semi-infinite perfect crystals. These are the 
Ewald and Darwin solutions for the symmetric Bragg 
case. It is shown that exact values of these limiting 
solutions can be obtained with the use of three con- 
cepts: (1) the kinematic scattering from a small 
absorbing crystal; (2) the Hamilton-Darwin energy 
transfer equations; (3) the dynamic refractive index 
of the crystal. 

I. Introduction 

In 1967 Zachariasen attempted to obtain a general 
solution for the extinction factor in a finite perfect 
crystal. He used the Darwin (1922) energy transfer 
equations to describe the flow of the incident and 
diffracted beams through the crystal and made the 
intuitive conjecture that the coupling coefficient 
between the beams could be represented by the 
kinematic scattering cross section per unit volume 
from a small and perfect crystal. He did not include 
absorption in the small crystal and he made the 
approximation that the wave vectors within the crystal 
were the same as the wave vectors in free space. His 
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treatment did not reproduce the classical dynamical 
theory solutions for the fiat plate of finite thickness, 
which is the only case for which exact solutions are 
available. 

Sabine (1988, 1992) showed that, with the use of 
Hamilton's (1957) generalization of Darwin's 
equations this method led to the exact Ewald (/z = 
0, /zD = 0) solxttion for the integrated intensity in the 
Bragg case, but that the solution obtained for the 
Darwin (/z -~ 0, /zD >> 0) case was in error by a factor 
of one-half. 

In the present work it is shown that, with the 
inclusion of the dynamic refractive index of the crystal 
and explicit allowance for absorption in the calcula- 
tion of the diffraction profile of the small crystal, the 
conjecture by Zachariasen (1967) leads to the exact 
solution for both limits. 

The analysis is given for neutrons for which the 
polarization factor is unity and, by convention, the 
structure factor includes the scattering length. 

2. Notation 

A = ANt F ~ l T / s i n  OB- ANc F'HID. 
D Average path length of the diffracted beam in 

the crystal. 
FH The structure factor of the reflection whose Mil- 

ler indices are H K L  ( FH = F'H + iF~ ). 
g =-F~/FT, .  
k Scattering vector in free space Ilk I = 2(sin 0)/X ]. 
K Scattering vector within the crystal. 
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